Theory of planar cures

If M is an interval or differ to S^{2} and if $X: M \times[0, T) \rightarrow \mathbb{R}$ is a smooth map which is an immersion $\forall t$, then $X(t)$ is said to a sol of the curve shortening flew if

$$
\begin{aligned}
& \frac{\partial x}{\partial t}(u, t)=-K(u, t) N(u, t) \\
& x=\text { curvature } \\
& N=\text { unit normal vector }
\end{aligned}
$$

Def:- A curve ire \mathbb{R}^{n} is a map $X:(\alpha, \beta) \rightarrow \mathbb{R}^{n}$ for some $-\infty \leq \alpha<\beta \leq \infty$.
e.g. a parabola $X:(-\infty, \infty) \rightarrow \mathbb{R}^{2}, X(u)=\left(u, u^{2}\right)$ which can les equivalently parametrised by
$X(u)=\left(u^{3}, u^{6}\right)$ or $X(u)=\left(2 u, 4 u^{2}\right)$ etc.
a circle of radius $r: X(u)=(r \cos u, r \sin u)$ $\omega / \quad[\alpha, \beta]=[0,2 \pi]$.
$\frac{d X}{d u}=X^{\prime}(u)$ is called the "tangent vector" at $X(u)$.
\rightarrow lune will be immersed if $\left|X^{\prime}(u)\right| \neq 0$. (also called "regular curves").
$\rightarrow X$ is called an embedded curve if X is a homeomorphism onto its in age.
Closed curves would mean immersions χ Defined on all of \mathbb{R} but which are periodic, i.e., \exists $a>0$ sit. $X(u+a)=X(u) \quad \forall u \in I$.

Closed curves $\omega /$ an embedding would mean X is injecture modulo its periodicity

$$
\text { i.e., } \quad X(u)=X\left(u^{\prime}\right) \Rightarrow u^{\prime}-u=k a, k \in \mathbb{Z} \text {. }
$$

In this case X is a simple closed cure.

Simple dosed curve

mon-simple closed curve.

Arc length
Def:- The arc-length of a cums X stenting at some point $X\left(u_{0}\right)$ is the functiaic $s(u)$ w/

$$
s(u)=\int_{u_{0}}^{u}\left|x^{\prime}(t)\right| d t .
$$

So $s\left(u_{0}\right)=0$ and it could be positive or negative.
exp.
Calculate the arc-length parameter $s(u)$ for

$$
X(u)=\left(e^{u} \cos u, e^{u} \sin u\right)
$$

logarithmic spiral.

If s is the arc length of X starting at
$X\left(u_{0}\right)$ then

$$
\frac{d s}{d u}=\frac{d}{d u} \int_{u_{0}}^{u}\left|x^{\prime}(t)\right| d t=\left|x^{\prime}(u)\right|
$$

We define the unit tangent vector T to be

$$
T=\frac{d X}{d s}=\frac{d X}{d u} \cdot \frac{d u}{d s}=\frac{X^{\prime}(u)}{\left|X^{\prime}(u)\right|}
$$

Note:- If v is a unit vector that is a smooth fenctioic of u then $v^{\prime} L_{r} v$.

In particular, $X^{\prime \prime}$ is either zero or perpendi-- cular to X^{\prime}.

Curvature
Two guiding principles:-
i) the curvature of a curve should be unchanged when the curve is reparametrized.
2) the culture of a straight line $\equiv 0$ and curvature of bigger circles should be smaller than curvature of smaller circles.

Sefn:- If s is the arc-length parameter the the curvature $x(s)$ af $X(s)$ is $\left\|\frac{d^{2} X}{d s^{2}}\right\|$.

Exercise:- compute the curvature of the helix

$$
X(\theta)=(a \cos \theta, a \sin \theta, b \theta),-\infty<\theta<\infty
$$

Let's specialize to $X:(\alpha, \beta) \longrightarrow \mathbb{R}^{2}$, i.e., to planar curves.

Define the unit normal vector to the cure as - the unit vector obtained by rotating T counter clockwise by $\pi / 2$.

ie, our convention is that simple closed curve w/ a counter clockwise parametrisateaie kiss an outward pointing normal.
$\because T$ is a unit vector $\Rightarrow \frac{d T}{d S}$ is perpendicular to T and hence parallel to N. Thus \exists some number $x<$ st

$$
\begin{aligned}
& \frac{d T}{d \delta}=-K N \\
& \frac{d N}{d \delta}=K T
\end{aligned} \quad\left\{\begin{array}{l}
\text { Frenet-Serret } \\
\text { equations }
\end{array}\right.
$$

Reversing the direction of parametrisateoir reverses S, T and $N \Rightarrow$ it reverses the sign of k, but $k N$ is uneffected. $k N$ is called the curvature vector of X.

Also, $\quad x=\left\langle\frac{d N}{d s}, T\right\rangle=-\left\langle\frac{d T}{d s}, N\right\rangle$.

Example:- Consider the round circle of radius or $\omega / X(\theta)=(r \cos \theta, r \sin \theta)$.

The arc length parameter $S=$ Or and :o the arc-length reparametrisatioii of the cum is

$$
\begin{aligned}
& X(s)=r\left(\cos \left(\frac{s}{r}\right), \sin \left(\frac{s}{r}\right)\right) . \\
& X^{\prime}(s)=\left(-\sin \left(\frac{s}{r}\right), \cos \left(\frac{s}{r}\right)\right)
\end{aligned}
$$

and $\left|x^{\prime}(s)\right|=1$

$$
X^{\prime \prime}(s)=\left(-\frac{1}{r} \cos \frac{s}{r},-\frac{1}{r} \sin \frac{s}{r}\right)
$$

$\Rightarrow\left\|X^{\prime \prime}(s)\right\|=\frac{1}{R}$ which is the curvature of the circle.

