If M is an interval or diffeo to S<sup>2</sup> and if  $X: M \times [0,T) \rightarrow \mathbb{R}$  is a smooth map which is an immersion If t, then X(t) is said to a sol<sup>n</sup> of the everve shortening flow if  $\frac{\partial X}{\partial t}(u,t) = -K(u,t) N(u,t)$ 

Set? - A curve in 
$$\mathbb{R}^n$$
 is a map  $X: (\alpha_1\beta) \longrightarrow \mathbb{R}^n$   
for some  $-\omega \le \alpha < \beta \le \omega$ .  
e.g. a parabola  $X: (-\omega_1\omega) \longrightarrow \mathbb{R}^2$ ,  $X(u) = (u_1u^2)$   
which can be equivalently parametrised by

$$\chi(u) = (u^3, u^6)$$
 or  $\chi(u) = (2u, 4u^2)$  etc.

a circle of radius 
$$r: X(u) = (r \cos u, r \sin u)$$
  
 $w/ [\alpha_1 \beta] = [0, 2\pi].$ 

$$\frac{dX}{du} = X'(u) \text{ is called the "tangent vector" at } X(u).$$

homeomorphism outo its image.  
Closed curves would mean immensions X Defined  
on all of IR but which are periodic, i.e., 
$$\exists$$
  
 $a > 0$  of  $X(u+a) = X(u)$   $\forall u \in \mathbb{T}$ .

- Closed unues w/ an embedding would mean X is injecture modulo its periodicity i.e., X(u) = X(u') = V(u') = V(u'-u) = Ra, REZ.
- In this case X is a simple closed curve.



simple closed curre



non-simple closed linne.

Arc length Def: - The anc-length of a curve X starting at some point X(40) is the function &(4) w/  $s(u) = \int_{1}^{u} \chi'(t) dt$ Un

$$T = \frac{dX}{ds} = \frac{dX}{du} \cdot \frac{du}{ds} = \frac{X'(u)}{|X'(u)|}$$

<u>Note</u>:- If V is a unif vector that is a smooth femition of u then  $V' \perp_r V$ . In particular, X'' is either zero or perpendi-- ular to X'.

## Curvature

No guiding principles:i) the unvalue of a curve should be unchanged when the curve is reparametrized. 2) the curvature of a straight line = 0 and curvature of bigger circles should be smaller than curvature of smaller circles.

Set - If s is the arc-length parameter that the curvature 
$$X(s)$$
 of  $X(s)$  is  $\|\frac{d^2X}{ds^2}\|$ .

Exercise: compute the curvature of the helix 
$$\chi(0)=(a\cos\theta, a\sin\theta, b\theta), -o<0<0.$$

Define the unit normal vector to the curve as - the unit vector obtained by rotating T counter clockwise by T/2. i.e. Ou convention is that simple closed curve w/ a counter clockwise parametrisation lises an outward pointing normal.

"•" Trisca unif vector =>  $\frac{dT}{ds}$  is perpendicular to T and hence parallel to N. Thus 3 Some number X st  $\frac{dT}{ds} = -KN$  Frenet-Serret equations  $\frac{dN}{ds} = KT$ 

Reversing the direction of parametrisation reverses S, Tond N = 0 it reverses the sign of K, but KN is conffected. KN is alled the curvature vector of X.

Also, 
$$x = \langle \frac{dN}{ds}, T \rangle = - \langle \frac{dT}{ds}, N \rangle$$
.

Example: Consider the round circle of radius 
$$r$$
  
 $w/X(0) = (r coro, risino).$   
The arc length parameter  $S = 0r$  and to the  
arc-length preparametrisation of the curve is  
 $X(s) = r(coo(\frac{s}{r}), sin(\frac{s}{r})).$   
 $X'(s) = (-sin(\frac{s}{r}), coo(\frac{s}{r}))$   
and  $|X'(s)| = 1$   
 $X''(s) = (-\frac{1}{r}cos\frac{s}{r}, -\frac{1}{r}sin\frac{s}{r})$   
 $= 1|X''(s)| = \frac{1}{R}$  which is the curvature  
of the eircle.

···· ·